Amplification of enantiomeric excess, mirror-image symmetry breaking and kinetic proofreading in Soai reaction models with different oligomeric orders.
نویسندگان
چکیده
A comprehensive kinetic analysis of three prototypical autocatalytic cycle models based on the absolute asymmetric Soai reaction is presented. The three models, which can give rise to amplification of enantiomeric excess and mirror-image symmetry breaking, vary by their monomeric, dimeric or trimeric order of the assumed catalytic species. Our numerical approach considered the entire chiral combinatorics of the diastereomeric interactions in the models as well as the multiplicity of coupled reversible reactions without applying fast equilibration or quasi-steady state approximations. For the simplest monomeric model, an extensive range of parameters was explored employing a random grid parameter scanning method that revealed the influence of the parameter values on the product distribution, the reaction-time, the attenuation or amplification of enantiomeric excess as well as on the presence or absence of mirror-image symmetry breaking. A symmetry breaking test was imposed on the three models showing that an increase in the catalytic oligomer size from one to three leads to a higher tolerance to poorer chiral recognition between the diastereoisomers and identifies the greater impact of the diastereoisomeric energy difference over an imperfect stereoselectivity in the catalytic step. This robustness is understood as a particular case of so-called kinetic proofreading in asymmetric autocatalysis.
منابع مشابه
Mirror-symmetry breaking in the Soai reaction: a kinetic understanding.
Kinetic modeling using nonlinear differential equations is proposed to analyze the spontaneous generation of enantiomeric excess in the autocatalytic addition of diisopropylzinc to prochiral pyrimidine carbaldehydes (Soai reaction). Our approach reproduces experimentally observed giant chiral amplification from an initial enantiomeric excess of <10(-6)% to >60%, high sensitivity and positive re...
متن کاملRate Equation Approaches to Amplification of Enantiomeric Excess and Chiral Symmetry Breaking
Abstract Theoretical models and rate equations relevant to the Soai reaction are reviewed. It is found that in a production of chiral molecules from an achiral substrate autocatalytic processes can induce either enantiomeric excess (ee) amplification or chiral symmetry breaking. Former terminology means that the final ee value is larger than the initial value but depends on this, whereas the la...
متن کاملStochastic Approach to Enantiomeric Excess Amplification and Chiral Symmetry Breaking
Stochastic aspects of chemical reaction models related to the Soai reactions as well as to the homochirality in life are studied analytically and numerically by the use of the master equation and random walk model. For systems with a recycling process, a unique final probability distribution is obtained by means of detailed balance conditions. With a nonlinear autocatalysis the distribution has...
متن کاملKinetic Aspects of Soai ́s Asymmetric Autocatalysis
Recent kinetic studies are discussed that shed light on the reaction mechanism of the autocatalytic addition of diisopropylzinc to pyrimidine carbaldehydes (Soai reaction). Soai’s reaction stands for the exclusive example of chirally autocatalytic reaction system in organic chemistry and has attracted close attention from several viewpoints: as possible account for the origin of biomolecular ho...
متن کاملNatural Abundance Isotopic Chirality in the Reagents of the Soai Reaction
Isotopic chirality influences sensitively the enantiomeric outcome of the Soai asymmetric autocatalysis. Therefore magnitude and eventual effects of isotopic chirality caused by natural abundance isotopic substitution (H, C, O, Zn) in the reagents of the Soai reaction were analyzed by combinatorics and probability calculations. Expectable enantiomeric excesses were calculated by the Pars–Mills ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 14 38 شماره
صفحات -
تاریخ انتشار 2012